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Transition metal catalyzed carbonylation of organic substrates

has proved an important method for the synthesis of carbon
carbon and carberheteroatom bondsThe synthesis gB-lactams
by transition metal catalyzed processes is well documéfiset
has been accomplished by the carbonylation of aziridines,
2-bromoallylamines$,propargylamine$,4-amino-2-alkynyl car-
bonates, and allyl phosphates in the presence of imifes.

Scheme 1.Synthesis of 5-Vinyloxazolidinonek
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and five-membered lactams by decarboxylative carbonylation of
6-vinyltetrahydro-#-1,3-oxazin-2-one¥

Since the decarboxylative carbonylation of vinyltetrahydro-
oxazinone¥ leads to ring contraction to forny-lactams, we
envisaged a similar process leading from 5-vinyloxazolidin-2-
onesl to -lactams. In this contribution we report that palladium-
catalyzed decarboxylative carbonylation of amino acid-derived
5-vinyloxazolidin-2-ones does not give the expecfeldctams.
Instead, the correspondirdglactams, 3,6-dihydroH-pyridin-2-
ones, are formed.

The required 5-vinyloxazolidin-2-ondswere synthesized from
the corresponding-amino aldehydé$ 2 (R? = H) or ketone2d
(R = i-Pr, R = Me) (Scheme 1). Aldehydez (R?> = H) were
obtained by Swern oxidatiéh of the correspondingN-BOC

Transition metal catalyzed carbonylative syntheses of lactams with Protecteda-amino alcohols. Keton@d (R* = i-Pr, R = Me)

ring sizes larger than 4 include: benzo-fused five-, six-, and seven-

was prepared by the addition of MeMgBr to the corresponding

membered lactams by cyclocarbonylation of 2-aminostyrenes andWeinreb amidé?® Grignard additions ta2 proceeded, as ex-

2-allylanilines? four-, five-, six-, and seven-memberedlS-
unsaturated lactams from amino vinyl-halitfégand -triflatest®
five-, and six-membered lactams by hydrocarbonylation of amino-
alkene&'2band -alkynedicfive-, and six-membered lactams by
carbonylative ring-expansion of azetidif@sand pyrrolidines?
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pected.* with low diastereoselectivity to produce the alcoh®ls
as 1-5:1 mixtures of diastereoisomers which were cyclized to
the oxazolidinoned by treatment with sodium hydride.
Attempted carbonylation ofa under the conditions reported
for ring-expansion of aziridinds(20 mol % Pd(dbay-CHCIs,
160 mol % PPk 1 atm CO, rt, GHg) gave complete recovery of
starting material. Indeed, we were unable to find any catalyst/
solvent system which would enable the carbonylation of vinyl-
oxazolidinones to proceed at 1 atm of CO. Even at higher
pressures (up to 60 atm) the carbonylation was unsuccessful in
aprotic solvents such as THF, DMF, and MeCN. However,
carbonylation was successful using Pd(Of®Ph). (5 mol %)
at a CO pressure of 65 atm in a protic solvent, ethahdhe
product from this reaction was not the expegteldctam but the
d-lactam4a. The reaction was not catalyzed by either Pd(QAc)
or PPh alone. Table 1 shows that this reaction is successful for
a range of oxazolidinones provididglactams in good to excellent
yields*® The reaction tolerates substitution at C-3 (RMe, see
entry for1g) and on the central carbon of the allyl systeni R
Me, entries forld—f), but fails in the case of the terminally
disubstituted vinyl derivativdh (R* = Me) probably due to the
requirement for carbonylation to form a quaternary center in this
case. Comparison dfa and4g with ent4a andent4g (prepared
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Table 1. Palladium Catalyzed Decarboxylative Carbonylations of ~ Scheme 2.Carbonylation ofN-BOC-Protected

5-vinyloxazolidinonesl? 5-Vinyloxazolidinone5
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h. ? Isolated yield* The (4R)-isomer (derived fronR-phenylglycine) syn7
was used? Starting material was recovered. LoPd cat.

R! \—J/(
. . 0 RZ R3
from (R)-valine) by chiral GE*?° showed that no loss of N co ® -
stereochemical integrity had occurred during the syntheses. - HQN,..»-Psz ¥ o
The reason for the unexpected regioselectivity of carbonylation R L2 R \/ s

is unclear. Endo-type cyclizations afallyl palladium intermedi- 4 RM R?

ates to give the larger of the two available ring sizes are commonly R g

seen in macrolide and medium ring carbocycle syntt@sis. ghowed no evidence ¢f-lactam formation (in particular, no
However, when the selectivity is between formation of four- and signals between 3.5—4 for the azetidinone 3- and 4-protdf)s
six-membered rings, kinetic control usually leads to g{‘e smaller The 7-allyl intermediate formed in this reaction clearly does not
rng S|ze§c (as seen in the formation of carbocytieand decarboxylate since this would produce an intermediate identical
f-lactamse<). With heteroatom nucleophiles, such as nitrogen,  yhat formed in the carbonylation of vinylaziridines. Subjecting
formation of the larger ring size is possible due to thermodynamic g o our carbonylation conditions did not lead to tNeBOC-
control resulting from reversible cyclizatigh?* It is therefore o qtecteds-lactam but gave the ethoxycarbonylated allylic amine
possible that kinetic formation of the-lactam is followed by 6 in 48% yield (Scheme 2).

equilibration to the more stabl&lactam in our case. It should Formation of theanti complex7 (Scheme 3) and decarboxy-
be noted that treatment f-tosyl vinyloxazolidinones with Pd- 1400 may be favored by interaction between the nucleophilic
(PPh), catalyst is reported to lead to the corresponding Vinyl- amine and Pdanti intermediate8 has the required geometry to
aziridines by loss of Ce?® Treatment of the vinyloxazolidinone  ¢5:m the six-membered fing. In the case &f the electron-

la with Pd(PPh), catalyst in either THF or EtOH leads t0  ihdrawing nature of the BOC group may lead to decarboxy-

N\ ®
PdL>

recovery of the oxazolidinone as a singkas) diastereoisomer.  tin to form allyl species with no NPd coordination. Proto-
Thus, ring opening of the oxazolidinone to form theallyl nation of the nitrogen by ethanol will render it a rather poor
palladium species is reversible and is not accompanied by faSInucIeophiIe; hence, the formation of the ethoxycarbonylated
decarboxylation. speciess.

In the formation of-lactams from vinylaziridines, the nitrogen In summary, we have demonstrated that palladium-catalyzed

carries an electron-withdrawing group (BOC or Ts). We therefore qecarhoxylative carbonylation of 5-vinyloxazolidin-2-ones, which
prepared th&l-BOC-protected vinyloxazolidinorteand subjected 46 readily prepared from amino acid precursors, leads to 3,6-
it to carbonylation under Ohfune’s conditioftsThe only identifi- dihydro-1H-pyridin-2-ones in good yields. Further studies into
able compound from this reaction was unreacted35%); the mechanism of this reaction and synthetic applications of the
however, the'H NMR spectrum of the crude product mixture |3ctam products are underway and will be reported in due course.

(:ZL(?) Stationary phase: heptakis(2,6@lmethyl-3-O-pentyl){3-cyclodex-
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